SANYUDRIVE 475/485 # High-Voltage Inverters 3-Phase 6kV 220kW-4350kW 3-Phase 6.6kV 220kW-4800kW 3-Phase 10kV 220kW-7100kW 3-Phase 11kV 220kW-8000kW ## Sanyu Industry CO., Ltd ### Reliable System Adhere to the design concept of reliability and safety, to ensure the long-term stable system operation and reliable system protection. #### **Extensive Functions** In conjunction with several practical functions featured by SANYU, the inverters provide high energy saving and is pollution-free, also is convenient, stable and more secure! #### Table of Contents - 02 Enterprise Overview - 04 Performance Features - 04 —Compact Structure - 05 Excellent Performance - 07 Reliable System - 08 Extensive Functions - 10 Industrial Applications - 14 Technical Data - 14 Product Principles - 16 —Standard Specification - 18 Denomination Rules - 19 Terminal Diagram - 20 External Outline - 21 Overall Dimension - 22 Instructions for Options - 23 More Extensive Products SANYUDRIVE A7S/A8S The smaller footprint minimizes the project investment costs! # Compact Structure #### **SANYUDRIVE A7S/A8S** Combining the latest international electrical control technology, the compact & simplified main circuit structure and the modular construction, SANYUDRIVE-A7S/A8S series of high-voltage inverters use the space efficiently, realizing the overall transportation, installation and other processes easily. The small footprint and light weight facilitate the design selection, which efficiently saves the installation space, improves the installation efficiency and become the first choice! #### Touch-Screen The 10.4" super-large LCD touch screen provides friendly all-Chinese or all-English graphical interface, online help for functional code setting, intuitive and easy operation, easy parameter setting, running log, status monitoring and other functions. #### Temperature Controller Three-phase digital logging tester ## Phase-shifting transformer The isolating phase-shifting transformer realizes the harmonic offset; the input harmonic meets the IEEE-519-1992 standard and the GB/T14549-93 standard, lowering the harmonic pollution to the power grids. #### Dust-proof Device Can be replaced during normal inverter operation, which is safe and convenient. #### System cooling fan Using the high-quality imported highperformance centrifugal fan. Separate duct and centralized cooling Long service life, high reliability. #### Main Controller The use of high-end dual-chip 32-bit DSP and FPGA provides strong computing capability. Through fiber-optic communication with power unit and with complete electrical isolation, the system is equipped with extremely high safety, immunity and reliability. #### Independent Control Cabinet Separate high-voltage and low-voltage design, with strong immunity as well as high safety and reliability. Pull-out control panel, with simple operation and convenient maintenance. #### Small-sized Power Unit The second generation of power unit, with modular and compact design, the moistureproof circuit board provides favorable dust resistance, easy accessibility and high interchangeability. ## Excellent Performance #### High-performance vector control SANYUDRIVE-A7S/A8S series of high-voltage inverters are equipped with vector control functions. They can be used in occasions with low speed & large torque, fast dynamic response, high control accuracy or rapid braking; they also bring the entire drive system with higher reliability and better overall running efficiency. #### High level of conversion efficiency Inheriting the SANYU electrical conversion technology, SANYUDRIVE-A7S/A8S series of high-voltage inverters provide with the industry-leading high power conversion efficiency, with an overall efficiency of over 97%, which minimize the waste of electrical resources. #### Sketch of power conversion efficiency ratio #### High-quality harmonic characteristics #### Waves of input voltage & current The multiple inputs have no harmonic pollution to the power grids, meeting the IEEE Std519-1992 and GB/T14549-93 standards. #### Waves of output voltage & current The output adopts the carrier wave phase-shifting PWM, without the need of output filter. The output harmonic meets the GB and IEEE standards, with small dv/dt and has no special requirements on the motor. # Reliable System #### Perfect warning & protection functions #### System Redundancy Design - Dual control power design, which can realize the stable operation during short power outage. - Strict derating design, with large allowance and long life for main elements. - Wide voltage range design, which can realize the stable operation within the range of -40% ~ +10%. - Modular unit design, with interchangeability and easy for local maintenance. #### Strong Adaptability - The moisture-proof control board improves the circuit antipollution capability. - The nickel-plated copper boards of the overall device and the units enhance the adaptability under harsh working conditions. - High altitude design, which can be used at 3000m above sea level. - Overall flame-retardant design, which improves the safety performance. design High altitude Nickel-plated processing Flame-retardant design Moisture-proof processing ## **Extensive Functions** #### Current instability eliminating function When the motor is light-loaded, the phenomena of current instability may occur under normal circumstances; the proprietary SANYU technology can significantly eliminate the phenomena of current instability caused by dead zone or too light load. Without current instability eliminating function With current instability eliminating function #### Automatic anti-stall function - In case of accelerating/decelerating: Flat the accelerating/decelerating slope, to change it along the direction of time extending to the preset frequency. - In case of constant-speed running: If the inverter output current exceeds the current limit value, the output current must be reduced by lowering the output frequency. #### Unique speed search startup function When you start the inverter in case that the motor rotates freely, the advanced speed search function is used to search the free rotation speed and direction of the motor, which can realize the reliable startup and effectively avoid the over-current occurred at the startup during free motor rotation. - The motor maintains the power generation mode in the event of momentary power failure, and the speed of DC bus voltage drop is reduced by utilizing the feedback energy from the loads. - The instantaneous power failure restart function should be used even in under-voltage protection; the speed-track startup will be realized automatically after the grid voltage is recovered. #### Intelligent PID function - Internal PID function: the closed-loop control of the controlled variables can be realized without the need of external PID controller. - Intelligent PID function: using the fuzzy control theory, the proportion, integral and differential parameters can be automatically adjusted online according to the deviation and deviation change rate, without the need of user setting, which realizes the closed-loop control of the controlled variables and facilitates the user closed-loop control! | Functional code group | No. | Functional designation | Numerical value | Description | |---|-----|------------------------|-----------------|----------------------| | Internal closed-loop
adjusting parameter
F6 | | Closed-loop | 0 | Open-loop
control | | | 0 | control mode | 1 | PID control | | | | | 2 | Fuzzy control | #### V/f separation control mode It can completely independently control the output frequency and voltage, and can effectively control the special motors. #### V/f proportional separation mode It can effectively take use of the original V/f pattern, and will increase or decrease the voltage ratio through external analog input. It is used for special motors or used as the countermeasures for over-excitation that may occur during the motor acceleration/deceleration. #### V/f complete separation mode It can completely independently control the frequency and voltage. The output voltage is controlled by external mode, and is used to control the torque motor or to increase the freedom of external control. #### Multi-segment V/fcurve, graphical operation function | Functional code group | No. | Functional designation | Numerical
value | Description | |-----------------------|-----|------------------------|--------------------|---| | Graphical operating | | | 0 | Without graphical operating function | | | 0 | Graphical operating | 1 | Operate one cycle and then stop | | parameters | " | mode | 2 | Operate repeatedly | | F3 | | switch | 3 | Operate one cycle and then operate with the final speed | #### Automatic Energy-Saving Function Using the unique SANYU automatic energy-saving function, the energy-saving is achieved by providing high-efficient voltage according to the torque required by the loads, therefore realizing the double effects of energy-saving in inverters. For the changes of frequency setting, stoppage and the dramatical changes of load, the energy-saving mode can be quickly restored to the normal output voltage, to avoid the insufficient load torque. # Unit bypassing and line voltage balancing technology - Optional IGBT faulty unit bypassing, line voltage balanced output, the reset operation can be carried out when an individual unit is damaged. - Up to 2 units can be bypassed in the same phase, and 3 units can be bypassed for the entire system! #### **SANYUDRIVE A7S/A8S** #### Main industries Blast furnace blowers, induced draft fans, primary/ secondary dust-removing fans, exhaust fans, compressor fans, condensate pumps, circulating pumps, slag-washing pumps, mud pumps, feed pumps, scale-removing pumps, compressors, cold rolling mills, hot rolling mills, crushers, etc. Main
pipeline pumps, injection pumps, circulating pumps, electric submersible pumps, brine pumps, blast furnace blowers, primary/secondary dust-removing fans, induced draft fans, blowers, scale-removing pumps, compressors, extruders, oil pumps, etc. Dust-removing fans, mine ventilators, belt conveyors, ball mills, granite crushers, mine lifters, diggers, drainage pumps, exhaust fans, medium pumps, etc. Water supply pumps, water intake pumps, purification pumps, circulating pumps, sewage pumps, blowers, induced draft fans, booster pumps, lift pumps, etc. Induced draft fans, blowers, boiler water feed pumps, condensate pumps, circulating pumps, exhaust fans, mortar pumps, etc. Kiln induced draft fans, forced fans, cooler dust-collecting fans, raw material grinders, kiln air supply blowers, coolers, exhaust blowers, separator fans, main dust-collecting fans, etc. Wind tunnels, heavy-duty gas turbines, etc # Application advantages of SANYU high-voltage inverters #### Energy-saving Operation - The original power frequency baffle board control mode has been changed into the V/f motor speed control mode, which can realize significant energy savings. - The advanced energy-saving technology of SANYU highvoltage inverter enables that the motor is always running efficiently, and the internal automatic energy-saving function can further achieve the double effect of energy saving. #### High Reliability - In case of instantaneous power failure, the SANYU high-voltage inverter runs a unique low-voltage compensation function, and will also maintain the operation by effectively utilizing the feedback energy from the motor. The greater is the load inertia, the better is the performance. - Along with the advanced forward/reverse speed tracking function, the inverter can start smoothly during bus switchover and when the motor rotates freely. - The SANYU high-voltage inverter is provided with the minimum frequency setting function, which can prevent the situation that there is no water supply to the pump, therefore ensuring the stable water supply. - During constant-speed operation: if the SANYU high-voltage inverter output current exceeds the current limit value, the output current must be reduced by lowering the output frequency. This will make the users feel peace of mind. #### Internal PID Functions The closed-loop control of the controlled variables can be realized without an external PID controller, which improves the quality of work, reduces the labor intensity, enables the unattended operation and saves the management costs. # Inherent advantages of V/f speed requlation - Avoid the constant-speed operation, as well as the high outlet pressure and severe pipe damage during value adjustment. - The superior performance of V/f regulation helps to realize the reconstruction of distributed control system, further improving the system optimization and increasing the degree of control automation. - Prolong equipment service life, reduce the maintenance costs. - With V/f regulation, the motor speed has been reduced, which greatly reduces the impact of environmental noise. #### **SANYUDRIVE A7S/A8S** #### Working characteristics of fans and pumps - 1 Features of fans and pumps: $H=H_0-(H_0-1)\times Q^2$ H – Head, Q – Flowrate, H₀ – Head @ flowrate 0 Pipeline resistance:R=KQ² - R Pipeline resistance, K Pipeline damping factor, O - Flowrate Notes: The above variables are all in per unit, with the rated value as the reference, the value of 1 indicates the actual value is equal to the rated value. Variable-valve control adjusts the flowrate of pumps and fans by changing the opening of pipeline valve. When adjusting the valve, the pump or fan power is essentially the same; the pump or fan performance curve maitains unchanged, while the pipeline resistance characteristic changes; the intersection point between the pump or fan performance curve and the new pipeline resistance characteristic curve is the new operating point. - Fan and pump shaft power P: P=KpQH/n P - Shaft power, Q - Flowrate, H - Pressure, η – fan and pump efficiency, Kp – Calculation constant - Relationships between flowrate, pressure, power and speed: $Q_1/Q_2 = n_1/n_2$; $H_1/H_2 = (n_1/n_2)^2$; $P_1/P_2 = (n_1/n_2)^3$ Variable-frequency control changes the operating point by changing the performance curve, without additional resistance during the variable-speed control; it is a more ideal control method. The stepless speed regulation of AC motor can be realized by changing the power supply working frequency through V/f control. When using the variable speed control, the efficiency of the pumps and fans is almost unchanged, the flowrate changes with the speed by the law of first power, while the shaft power will change by the law of third power; the V/f control is also used to reduce the fan or pump noise, therefore reducing the wear and prolonging the service life. #### Pilot calculation of nergy-saving (only for reference) Efficiency of motor in a certain power plant: 98% Shaft power @ rated air volume: 1000kW Fan characteristics: when the air volume Q is 0, the head will be 1.4p.u. (Per Unit, with rated value as the reference); with a curve characteristic of H=1.4-0.4Q², the annual running time is 8,000 hours Fan operating mode: #### When the air volume is regulated by variablevalve control: According to the fan & pump characteristic formula ① and the shaft power calculation formula ②, calculate the fan power consumptions at different air volumes. Assuming P_{100} is the power consumption @ 100% of air volume, P_{70} is the power consumption @ 70% of air volume, P_{50} is the power consumption @ 50% of air volume P₁₀₀=1000/0.98=1020kW P_{70} =1000×0.7× (1.4-0.4×0.49) /0.98=860kW $P_{50}=1000\times0.5\times$ (1.4-0.4×0.25) /0.98=663kW ## When the air volume is regulated by variable-frequency control: According to the relationship formula between fan & pump shaft power, flowrate, pressure and speed ③, calculate the fan power consumptions at different air volumes. Assuming P_{100} is the power consumption @ 100% of air volume, P_{70} is the power consumption @ 70% of air volume, P_{50} is the power consumption @ 50% of air volume P₁₀₀=1000/0.98/0.97=1052kW P₇₀=1000×0.343/0.98/0.97=360kW P₅₀=1000×0.125/0.98/0.97=131kW Annual motor power consumption = power usage @ 100% of air volume + power usage @ 70% of air volume + power usage @ 50% of air volume The annual power consumption of this motor will be:: $(1020\times8000\times0.2)+(860\times8000\times0.5)+(663\times8000\times0.3)$ =6, 663, 200kWH Assuming the electricity charge is CNY 0.8/KWH, the annual power costs will be: 6663200× 0.8=5,330,560 CNY The annual power consumption of this motor will be: $(1052\times8000\times0.2)+(360\times8000\times0.5)+(131\times8000\times0.3)$ =3, 437, 600kWH Assuming the electricity charge is CNY 0.8/KWH, the annual power costs will be: 3437600×0.8=2,750,080 CNY Power saving rate:48.4% Annual cost savings: 2,580,480 CNY ## Technical Data #### **Product Principles** #### SANYUDRIVE-A7S 6kV SANYUDRIVE-A7S/A8S high-voltage inverter adopts the serial multi-level technology, and is an inverter with high-high voltage source. SANYUDRIVE-A7S 6kV series can directly input and output 6kV voltage. The 6kV series are composed of five power units connected in series, with each power unit powered by the secondary isolation coil for the isolation transformer respectively, the output three-phase constitutes a Y-shape and provides power supply directly to the 6kV motor. The structure of power unit is of AC-DC-AC mode, each power unit is mainly composed of the input fuse, three-phase full-bridge rectifier, capacitor bank, IGBT inverter bridge and DC bus, also including the control drive circuit. Each unit adopts the three-phase input, the output voltage states of the pulse width modulation type inverter with single-phase output are 1,0 and -1. The superimposed five units in each phase of 6kV can produce 11 different levels of phase voltage. This structure uses low-voltage devices to achieve a high-voltage output, reducing the voltage withstanding requirements on the power devices, with very small harmonic pollution to the power grids. Since the input power factor is high, there is no need to use input harmonic filter and the power factor compensator, and the output waveform is similar to the sine wave. By controlling the mutual angle of power unit output PWM and using the carrier phase-shifting technology, the dv/dt of output PWM waveform is maintained very low; meanwhile, through the effect of mutual harmonic elimination, the excellent output harmonic performance can be realized at low carrier frequency. #### SANYUDRIVE-A7S 10kV SANYUDRIVE-A7S 10kV series can directly input and output 10kV voltage, Each phase of 10kV series is composed of eight power units connected in series, with each power unit powered by the secondary isolation coil for the isolation transformer respectively, the output three-phase constitutes a Y-shape and provides power supply directly to the 10kV motor. The power units for 10kV series are interchangeable with those for 6kV; the superimposed eight units on each phase can produce 17 different levels of phase voltage. The harmonic pollution to the power grid is very small. Since the input power factor is high, there is no need to use input harmonic filter and the power factor compensator, and the output waveform is similar to the sine wave. By controlling the mutual angle of power unit output PWM and using the carrier phase-shifting technology, the dv/dt of output PWM waveform is maintained very low; meanwhile, through the effect of mutual harmonic elimination, the excellent output harmonic performance can be realized at low carrier frequency. voltage superposition A1 <u>⊬</u> Α2 B1 C1 #### SANYUDRIVE-A8S 6/6.6kV Each phase of SANYUDRIVE-A8S 6kV and 6.6kV series is composed of 6 power units connected in series, with 36-pulse at input side, the input voltage at
transformer primary side is 6kV or 6.6kV, the secondary side is divided into 18 windings, the difference of phase angle between 6 windings of the same phase is 10°, this can eliminate the harmonic below 35 in the input current, and ensure the harmonic performance of input current can meet the requirements of appropriate international and domestic standards. SANYUDRIVE-A8S-6-6 model adopts 6 units connected in series, with a unit input voltage of 580V, 6 units can generate 3840V on one phase, and the line voltage is 6kV. SANYUDRIVE-A8S-6.6-6.6 model adopts 6 units connected in series, with a unit input voltage of 640V, 6 units can generate 3840V on one phase, and the line voltage is 6.6kV. By controlling the mutual angle of power unit output PWM and using the carrier phase-shifting technology, the dv/dt of output PWM waveform is maintained very low; meanwhile, through the effect of mutual harmonic elimination, the excellent output harmonic performance can be realized at low carrier frequency. For the 6-unit structure connected in series, the output phase voltage is of level 13, the output line voltage is of level 25. #### SANYUDRIVE-A8S 10/11kV Each phase of SANYUDRIVE-A8S 10kV and 11kV series is composed of 10 power units connected in series, with 60-pulse at input side, the input voltage at transformer primary side is 10kV or 11kV, the secondary side is divided into 30 windings, the difference of phase angle between 10 windings of the same phase is 6° , this can eliminate the harmonic below 59 in the input current, and ensure the harmonic performance of input current can meet the requirements of appropriate international and domestic standards. Each phase of SANYUDRIVE-A8S 10kV and 11kV series is composed of 10 power units connected in series; for 10kV series, the three-phase AC input voltage of each power unit is 580V, 10 units can generate 5800V on one phase, and the line voltage is 10kV. For 11kV series, the three-phase AC input voltage of each power unit is 640V, 10 units can generate 6400V on one phase, and the line voltage is 11kV. By controlling the mutual angle of power unit output PWM and using the carrier phase-shifting technology, the dv/dt of output PWM waveform is maintained very low; meanwhile, through the effect of mutual harmonic elimination, the excellent output harmonic performance can be realized at low carrier frequency. The 10 units of SANYUDRIVE-A8S 10kV and 11kV are connected in series to output PWM, the output phase voltage is of level 21, and the output line voltage is of level 41. 10kV / 11kV A1 B1 B3 Ğ <u>∆</u> <u>15</u> ∆ 5° ۵ £ 25° ∑ <u>15°</u> 5 15° # Technical Data #### Standard Specification | Produ | ıct Series | | | | | | | | | | | | | | |-------|----------------|---|---|--------------------------------|--------------------------------|--|--------------------------------------|--------------------------------|-------------------------------|---------------------------------|---------------------------------|---|------------------|---| | 11000 | CC JCHC3 | Model: CLIDE | DDDIVE ATC 6 6 FILM | 220 | 250 | 200 | 215 | 255 | 400 | AEO | FOO | EGO | 620 | 710 | | | | iviodei: SUPE | RDRIVE-A7S-6-6-□kW Compatible motor power(kW) | 220
220 | 250
250 | 280
280 | 315
315 | 355
355 | 400
400 | 450
450 | 500
500 | 560
560 | 630
630 | 710
710 | | | | | Rated output curren(A) | 220 | 32 | 280
35 | 40 | 355
45 | 50 | 450
55 | 61 | 67 | 630
79 | 87 | | | | Output | Main transformer capacity(kVA) | 28 | 330 | 360 | 420 | 45 | 520 | 550 | 630 | 700 | 820 | 900 | | | | Specification | Rated output voltage | 290 | 330 | 300 | 720 | 4/0 | 320 | 3/0 | 030 | 700 | 020 | 300 | | | | Specification | Rated output voltage Rated over-load current | | | | | | | | | | | | | | 6kV | | Number of series | | | | | | | | | | | | | | Series | Louis | Main circuit ※1 | | | | | | | | | | | | | | | Input power | Control circuit | | | | | | | | | | | | | | | supply | Allowable fluctuation | | | | | | | | | | | | | | | Approximate | | | 2500 | | | 00 | | 2900 | | | 3500 | | | | | | heat generation (kW) | 6.6 | 7.5 | 8.4 | 9.5 | 10.7 | 12 | 13.5 | 15 | 16.8 | 18.9 | 21.3 | | A7S | | Ventilation ra | | 200 | | 255 | | 000 | | | | 746 | 000 | 10000 | | | | Mode: SUPE | RDRIVE-A7S-10-10- kW Compatible motor power (kW) | 280
280 | 315
315 | 355
355 | 400
400 | 450
450 | 500
500 | 560
560 | 630
630 | 710
710 | 800
800 | 900
900 | | | | | Rated output current(A) | 280 | 26 | 355
29 | 32 | 35
35 | 40 | 560
44 | 50 | 55 | 60 | 900
67 | | | | Output | Main transformer capacity(kVA) | 400 | 450 | 500 | 550 | 600 | 700 | 760 | 870 | 950 | 1000 | 1160 | | | | Specification | Rated output voltage | +00 | 150 | 300 | | 1 000 | , ,,,, | 700 | 3/0 | 250 | 1000 | 1100 | | | , | | Rated over-load current | | | | | | | | | | | | | | 10kV | 1 | Number of series | | | | | | | | | | | | | | Series | Innutation | Main circuit | | | | | | | | | | | | | | | Input power | Control circuit | | | | | | | | | | | | | | | supply | Allowable fluctuation | | | | | | | | | | | | | | | Approximate | | 2800 | | 3000 | | | 200 | | 00 | 35 | | 4200 | | | | | heat generation (kW) | 8.4 | 9.5 | 10.7 | 12 | 13.5 | 15 | 16.8 | 18.9 | 21.3 | 24 | 27 | | | | Ventilation ra | | | | | 000 | | | | 120 | | | 15000 | | | | Model: SUPE | RDRIVE-A8S-6-6-□kW | 220 | 250 | 280 | 315 | 355 | 400 | 450 | 500 | 560 | 630 | 710 | | | | | Compatible motor power (kW) | 220 | 250 | 280 | 315 | 355 | 400 | 450 | 500 | 560 | 630 | 710 | | | | 0 | Rated output current(A) | 28 | 32 | 35 | 40 | 45 | 50 | 55 | 61 | 67 | 79 | 87 | | | | Output | Main transformer capacity(kVA) | 290 | 330 | 360 | 420 | 470 | 520 | 570 | 630 | 700 | 820 | 900 | | | | Specification | Rated output voltage | | | | | | | | | | | | | | 6kV | | Rated over-load current Number of series | | | | | | | | | | | | | | Series | | Main circuit ※2 | | | | | | | | | | | | | | | Input power | Control circuit | | | | | | | | | | | | | | | supply | Allowable fluctuation | | | | | | | | | | | | | | | Approximate | | | 2800 | | 30 | 000 | | 3300 | | | 3800 | | | | | | heat generation (kW) | 6.6 | 7.5 | 8.4 | 9.5 | 10.7 | 12 | 13.5 | 15 | 16.8 | 18.9 | 21.3 | | | | Ventilation ra | | | | | | 000 | | | | | | 10000 | | | | Model: SUPE | RDRIVE-A8S-6.6-6.6-□kW | 220 | 250 | 280 | 315 | 355 | 400 | 450 | 500 | 560 | 630 | 710 | | | | | Compatible motor power (kW) | 220 | 250 | 280 | 315 | 355 | 400 | 450 | 500 | 560 | 630 | 710 | | | | _ | Rated output current(A) | 26 | 29 | 32 | 37 | 41 | 46 | 50 | 55 | 61 | 72 | 79 | | | | Output | Main transformer capacity(kVA) | 290 | 330 | 360 | 420 | 470 | 520 | 570 | 630 | 700 | 820 | 900 | | | | Specification | Rated output voltage | | | | | | - | | | | | | | | 6.6kV | | Rated over-load current | | | | | | - | | | | | | | | Series | | Number of series Main circuit ※3 | | | | | | | | | | | | | | | Input power | Control circuit | | | | | | | | | | | | | | | supply | Allowable fluctuation | | | | | | | | | | | | | | | Approximate | | | 2800 | | 31 | 00 | | 3400 | | 38 | 00 | 4200 | | | | | heat generation (kW) | 6.6 | 7.5 | 8.4 | 9.5 | 10.7 | 12 | 13.5 | 15 | 16.8 | 18.9 | 21.3 | | A8S | | Ventilation ra | te(m³/h) | | | | | 7000 | | | | | | | | 7.03 | | Model: SUPE | RDRIVE-A8S-10-10-□kW | 280 | 315 | 355 | 400 | 450 | 500 | 560 | 630 | 710 | 800 | 900 | | | | | Compatible motor power (kW) | 280 | 315 | 355 | 400 | 450 | 500 | 560 | 630 | 710 | 800 | 900 | | | | | Rated output current(A) | 24 | 26 | 29 | 32 | 35 | 40 | 44 | 50 | 55 | 60 | 67 | | | | Output | Main transformer capacity(kVA) | 400 | 450 | 500 | 550 | 600 | 700 | 760 | 870 | 950 | 1000 | 1160 | | | | Specification | | | | | | | | | | | | | | | | Specification | Rated output voltage | | | | | | | | | | | | | | 10kV | Specification | Rated over-load current | | | | | | | | | | | | | | 10kV
Series | Specification | Rated over-load current Number of series | | | | | | | | | | | | | | | Input power | Rated over-load current Number of series Main circuit | | | | | | | | | | | | | | | | Rated over-load current Number of series Main circuit Control circuit | | | | | | | | | | | | | | | Input power | Rated over-load current Number of series Main circuit Control circuit Allowable fluctuation | 30 | 00 | 32 | 00 | 35 | 500 | 38 | 300 | 42 | 00 | 4500 | | | | Input power supply Approximate | Rated over-load current Number of series Main circuit Control circuit Allowable fluctuation | 30 | 00 9.5 | 32 | 00 12 | 35 | 500 | 38 | 300
18.9 | 42 21.3 | 00 24 | 4500
27 | | | | Input power supply Approximate Approximate Ventilation ra | Rated over-load current Number of series Main circuit Control circuit Allowable fluctuation weight (kg) heat generation (kW) te(m³/h) | 8.4 | | 10.7 | 12 | 13.5 | 15 | 16.8 | 18.9
120 | 21.3
000 | | 27
15000 | | | | Input power supply Approximate Approximate Ventilation ra | Rated over-load current Number of series Main circuit Control circuit Allowable fluctuation weight (kg) heat generation (kW) te(m³/h) RDRIVE-A8S-11-11-□kW | 8.4
315 | 9.5 | 10.7
100
400 | 12
000
450 | 13.5 | 15
560 | 16.8 | 18.9
120
710 | 21.3
000
800 | 900 | 27
15000
1000 | | | | Input power supply Approximate Approximate Ventilation ra | Rated over-load current Number of series Main circuit Control circuit
Allowable fluctuation weight (kg) heat generation (kW) te(m³/h) RDRIVE-A8S-11-11-□kW Compatible motor power (kW) | 8.4
315
315 | 9.5
355
355 | 10.7
100
400
400 | 12
000
450
450 | 13.5
500
500 | 15
560
560 | 16.8
630
630 | 18.9
120
710
710 | 21.3
000
800
800 | 900
900 | 27
15000
1000
1000 | | | | Input power
supply
Approximate
Approximate
Ventilation ra
Model: SUPE | Rated over-load current Number of series Main circuit Control circuit Allowable fluctuation weight (kg) heat generation (kW) te(m³/h) RDRIVE-A8S-11-11-□kW Compatible motor power (kW) Rated output current(A) | 315
315
24 | 9.5
355
355
26 | 10.7
100
400
400
29 | 12
000
450
450
31 | 500
500
37 | 560
560
40 | 630
630
46 | 18.9
120
710
710
50 | 21.3
000
800
800
55 | 900
900
61 | 27
15000
1000
1000
66 | | | | Input power supply Approximate Approximate Ventilation ra Model: SUPE | Rated over-load current Number of series Main circuit Control circuit Allowable fluctuation weight (kg) heat generation (kW) te(m³/h) RDRIVE-A85-11-11- Compatible motor power (kW) Rated output current(A) Main transformer capacity(kVA) | 8.4
315
315 | 9.5
355
355 | 10.7
100
400
400 | 12
000
450
450 | 13.5
500
500 | 15
560
560 | 16.8
630
630 | 18.9
120
710
710 | 21.3
000
800
800 | 900
900 | 27
15000
1000
1000 | | | | Input power
supply
Approximate
Approximate
Ventilation ra
Model: SUPE | Rated over-load current Number of series Main circuit Control circuit Allowable fluctuation weight (kg) heat generation (kW) te(m³/h) RDRRVE-A8S-11-11-□kW Compatible motor power (kW) Rated output current(A) Main transformer capacity(kVA) Rated output voltage | 315
315
24 | 9.5
355
355
26 | 10.7
100
400
400
29 | 12
000
450
450
31 | 500
500
37 | 560
560
40 | 630
630
46 | 18.9
120
710
710
50 | 21.3
000
800
800
55 | 900
900
61 | 27
15000
1000
1000
66 | | | Series | Input power supply Approximate Approximate Ventilation ra Model: SUPE | Rated over-load current Number of series Main circuit Control circuit Allowable fluctuation weight (kg) heat generation (kW) te(m³/h) RDRIVE-A8S-11-11- kW Compatible motor power (kW) Rated output current(A) Main transformer capacity(kVA) Rated output voltage Rated over-load current | 315
315
24 | 9.5
355
355
26 | 10.7
100
400
400
29 | 12
000
450
450
31 | 500
500
37 | 560
560
40 | 630
630
46 | 18.9
120
710
710
50 | 21.3
000
800
800
55 | 900
900
61 | 27
15000
1000
1000
66 | | | Series | Input power supply Approximate Approximate Ventilation ra Model: SUPE Output Specification | Rated over-load current Number of series Main circuit Control circuit Allowable fluctuation weight (kg) heat generation (kW) te(m³/h) RDRIVE-A8S-11-11- LkW Compatible motor power (kW) Rated output current(A) Main transformer capacity(kVA) Rated output voltage Rated over-load current Number of series | 315
315
24 | 9.5
355
355
26 | 10.7
100
400
400
29 | 12
000
450
450
31 | 500
500
37 | 560
560
40 | 630
630
46 | 18.9
120
710
710
50 | 21.3
000
800
800
55 | 900
900
61 | 27
15000
1000
1000
66 | | | Series | Input power supply Approximate Approximate Ventilation ra Model: SUPE Output Specification Input power | Rated over-load current Number of series Main circuit Control circuit Allowable fluctuation weight (kg) heat generation (kW) te(m³/h) RDRIVE-A8S-11-11- kW Compatible motor power (kW) Rated output current(A) Main transformer capacity(kVA) Rated over-load current Number of series Main circuit | 315
315
24 | 9.5
355
355
26 | 10.7
100
400
400
29 | 12
000
450
450
31 | 500
500
37 | 560
560
40 | 630
630
46 | 18.9
120
710
710
50 | 21.3
000
800
800
55 | 900
900
61 | 27
15000
1000
1000
66 | | | Series | Input power supply Approximate Approximate Ventilation ra Model: SUPE Output Specification | Rated over-load current Number of series Main circuit Control circuit Allowable fluctuation weight (kg) heat generation (kW) te(m³/h) RDRIVE-A8S-11-11- LkW Compatible motor power (kW) Rated output current(A) Main transformer capacity(kVA) Rated output voltage Rated over-load current Number of series | 315
315
24 | 9.5
355
355
26 | 10.7
100
400
400
29 | 12
000
450
450
31 | 500
500
37 | 560
560
40 | 630
630
46 | 18.9
120
710
710
50 | 21.3
000
800
800
55 | 900
900
61 | 27
15000
1000
1000
66 | | | Series | Input power supply Approximate Approximate Ventilation ra Model: SUPE Output Specification Input power | Rated over-load current Number of series Main circuit Control circuit Allowable fluctuation weight (kg) heat generation (kW) te(m³/h) RDRIVE-A8S-11-11—kW Compatible motor power (kW) Rated output current(A) Main transformer capacity(kVA) Rated output voltage Rated over-load current Number of series Main circuit Control circuit Allowable fluctuation | 315
315
24 | 9.5
355
355
26
500 | 10.7
100
400
400
29 | 12
000
450
450
31
600 | 500
500
37 | 15
560
560
40
760 | 630
630
46 | 18.9
120
710
710
50 | 21.3
000
800
800
55 | 900
900
61 | 27
15000
1000
1000
66 | | | Series | Input power supply Approximate Approximate Ventilation ra Model: SUPE Output Specification Input power supply Approximate | Rated over-load current Number of series Main circuit Control circuit Allowable fluctuation weight (kg) heat generation (kW) te(m³/h) RDRIVE-A8S-11-11—kW Compatible motor power (kW) Rated output current(A) Main transformer capacity(kVA) Rated output voltage Rated over-load current Number of series Main circuit Control circuit Allowable fluctuation | 8.4
315
315
24
450 | 9.5
355
355
26
500 | 10.7
100
400
400
29
550 | 12
000
450
450
31
600 | 500
500
500
37
700 | 15
560
560
40
760 | 16.8
630
630
46
870 | 18.9
120
710
710
50 | 21.3
000
800
800
55
1050 | 900
900
61 | 27
15000
1000
1000
66
1250 | ^{%1} The main circuit input voltage of this series could be: three-phase 10kV, 50Hz, corresponding model: SANYUDRIVE-A7S-10-6- \square kW %2 The main circuit input voltage of this series could be: three-phase 10kV, 50Hz, corresponding model: SANYUDRIVE-A8S-10-6- \square kW | Specifi | | | | | | | | | | | | | | | | | \perp | |--|--|--
--|--|---|--|---|--|---|---|---|---|--|--|---|--|---| | 800
800 | 900
900 | 1000
1000 | 1120
1120 | 1250
1250 | 1400
1400 | 1600
1600 | 1800
1800 | 2000 | 2240
2240 | 2500
2500 | 2800
2800 | 3000
3000 | 3150
3150 | 3550
3550 | 4000
4000 | 4350
4350 | | | 100 | 110 | 120 | 135 | 144 | 170 | 192 | 217 | 245 | 270 | 300 | 337 | 360 | 380 | 420 | 465 | 500 | | | 1000 | 1150 | 1250 | 1400 | 1500 | 1770 | 2000 | 2250 | 2500 | 2800 | 3150 | 3500 | 3750 | 3950 | 4370 | 4840 | 5520 | | | | | 40.0 | 6kV | | | | | | | | | | | | | | | | | 5-stage | | 0%/1 minut | e
lly 15 power | units | | | | | | | | | | | | | | | | | phase 6kV, | | dillo | | | | | | | | | | | | | | | | | ohase 220V, | | | | | | | | | | | | | | | | Vo | | % (-10% ~ -4 | 0% for dera | | ency: ±10% | | 6500 | | 1 75 | 00 | | .00 | 100 | 200 | 1 | 12000 | | | 24 | 3900
27 | 30 | 33.6 | 5500
37.5 | 42 | 48 | 6500
54 | 60 | 67.2 | 00
75 | 84 | 90 | 94.5 | 106.5 | 120 | 12000 | | | | | - 50 | 33.0 | 15000 | | | 20000
 1 00 | 07.2 | | 000 | , ,, | 75 | 100.5 | 28000 | 130.3 | | | 1000 | 1120 | 1250 | 1400 | 1600 | 1800 | 2000 | 2240 | 2500 | 2800 | 3150 | 3550 | 4000 | 4500 | 5000 | 5600 | 6300 | 7100 | | 1000 | 1120 | 1250 | 1400 | 1600 | 1800 | 2000 | 2240 | 2500 | 2800 | 3150 | 3550 | 4000 | 4500 | 5000 | 5600 | 6300 | 7100 | | 76
1300 | 87
1500 | 95
1650 | 100
1750 | 120
2000 | 130
2250 | 144
2500 | 160
2800 | 192
3350 | 200
3500 | 230
4000 | 260
4500 | 288
5000 | 330
5700 | 360
6250 | 410
7000 | 456
7900 | 500
8600 | | 1500 | 1300 | 1050 | 10kV | 2000 | 2230 | 2300 | 2000 | 3330 | 3300 | 4000 | 1 4300 | 3000 | 3700 | 0230 | 7000 | 7500 | 1 0000 | | | | 120 | 0%/1 minut | e | | | | | | | | | | | | | | | | 8-stage | | | lly 24 power | units | | | | | | | | | | | | | | | | | ohase 10kV,
ohase 220V, | | | | | | | | | | | | | | | | Vo | oltage: ±109 | | | | ency: ±10% | | | | | | | | | | | | | | | 46 | | 50 | 000 | | 6500 | | 7500 | | 9000 | | 12000 | 13000 | 14000 | 15000 | 16000 | 17000 | | 30 | 33.6 | 37.5 | 42 | 48 | 54 | 60 | 67.2 | 75 | 84 | 94.5 | 106.5 | 120 | 135 | 150 | 168 | 189 | 213 | | | | 180 | | | | 20000 | | | | 000 | | | 35000 | | | 43000 | | | 800 | 900
900 | 1000 | 1120 | 1250 | 1400 | 1600 | 1800 | 2000 | 2240
2240 | 2500
2500 | 2800
2800 | 3000 | 3150 | 3550 | 4000 | 4350 | | | 100 | 110 | 1000 | 1120
135 | 1250
144 | 1400
170 | 1600
192 | 1800
217 | 2000
245 | 270 | 300 | 337 | 3000
360 | 3150
380 | 3550
420 | 4000
465 | 4350
500 | | | 1000 | 1150 | 1250 | 1400 | 1500 | 1770 | 2000 | 2250 | 2500 | 2800 | 3150 | 3500 | 3750 | 3950 | 4370 | 4840 | 5520 | | | | | | 6kV | | | | | | | | | | | | | | | | | | | 0%/1 minut | | | | | | | | | | | | | | | | | 6-stage | | | lly 18 power | units | | | | | | | | | | | | | | | | | phase 6kV, :
ohase 220V, | | | | | | | | | | | | | | | | Vo | oltage: ±109 | | | | ency: ±10% | | | | | | | | | | | | | | | 4200 | | | 5800 | | | 7000 | | 80 | 00 | 90 | 000 | 120 | 000 | | 13000 | 24 | 27 | 30 | 33.6 | 37.5 | 42 | 48 | 54 | 60 | 67.2 | 75 | 84 | 90 | 94.5 | 106.5 | 120 | 130.5 | | | | | | | 15000 | | | 20000 | | | 250 | 000 | | | | 31000 | | 4800 | | 800 | 900 | 1000 | 33.6
1120
1120 | 15000
1250 | 1400 | 1600 | 20000 | 2000 | 2240 | 250
2500 | 2800 | 3000 | 3150 | 3550 | 31000
4000 | 4500 | 4800
4800 | | | | | 1120 | 15000 | | | 20000 | | | 250 | 000 | | | | 31000 | | 4800
4800
500 | | 800
800 | 900 | 1000 | 1120
1120
120
1370 | 15000
1250
1250 | 1400
1400 | 1600
1600 | 20000
1800
1800 | 2000 | 2240
2240 | 2500
2500
2500 | 2800
2800 | 3000
3000 | 3150
3150 | 3550
3550 | 31000
4000
4000 | 4500
4500 | 4800 | | 800
800
87 | 900
900
100 | 1000
1000
109
1250 | 1120
1120
120
1370
6.6kV | 15000
1250
1250
132
1500 | 1400
1400
155 | 1600
1600
175 | 20000
1800
1800
197 | 2000
2000
217 | 2240
2240
245 | 2500
2500
2500
276 | 2800
2800
300 | 3000
3000
328 | 3150
3150
345 | 3550
3550
382 | 31000
4000
4000
424 | 4500
4500
486 | 4800
500 | | 800
800
87 | 900
900
100
1150 | 1000
1000
109
1250 | 1120
1120
120
1370
6.6kV | 15000
1250
1250
132
1500 | 1400
1400
155
1770 | 1600
1600
175 | 20000
1800
1800
197 | 2000
2000
217 | 2240
2240
245 | 2500
2500
2500
276 | 2800
2800
300 | 3000
3000
328 | 3150
3150
345 | 3550
3550
382 | 31000
4000
4000
424 | 4500
4500
486 | 4800
500 | | 800
800
87 | 900
900
100
1150 | 1000
1000
109
1250
1260
serial connection | 1120
1120
120
1370
6.6kV | 15000
1250
1250
132
132
1500
e | 1400
1400
155
1770 | 1600
1600
175 | 20000
1800
1800
197 | 2000
2000
217 | 2240
2240
245 | 2500
2500
2500
276 | 2800
2800
300 | 3000
3000
328 | 3150
3150
345 | 3550
3550
382 | 31000
4000
4000
424 | 4500
4500
486 | 4800
500 | | 800
800
87 | 900
900
100
1150 | 1000
1000
109
1250
12C
serial conne | 1120
1120
120
1370
6.6kV
0%/1 minut
ection, total | 15000
1250
1250
132
1500
e
e
llly 18 power | 1400
1400
155
1770 | 1600
1600
175 | 20000
1800
1800
197 | 2000
2000
217 | 2240
2240
245 | 2500
2500
2500
276 | 2800
2800
300 | 3000
3000
328 | 3150
3150
345 | 3550
3550
382 | 31000
4000
4000
424 | 4500
4500
486 | 4800
500 | | 800
800
87
1000 | 900
900
100
1150
6-stage | 1000
1000
109
1250
1250
serial conne
Three-p
Single-p
6 (-10% ~ -4 | 1120
1120
120
1370
6.6kV
0%/1 minut
ection, total
bhase 6.6kV,
ohase 220V, | 15000
1250
1250
132
1500
e
Illy 18 power
,50Hz
,50Hz
sting), freque | 1400
1400
155
1770
units | 1600
1600
175
2000 | 20000
1800
1800
197
2250 | 2000
2000
217
2500 | 2240
2240
245
2800 | 2500
2500
2500
276
3150 | 2800
2800
2800
300
3430 | 3000
3000
328
3750 | 3150
3150
345
3950 | 3550
3550
382
4370 | 31000
4000
4000
424 | 4500
4500
486
5560 | 4800
500 | | 800
800
87
1000 | 900
900
100
1150
6-stage | 1000
1000
109
1250
120
serial connor
Three-p
Single-p
6 (-10% ~ -4 | 1120
1120
120
1370
6.6kV
00%/1 minut
ection, total
bhase 6.6kV,
bhase 220V,
0% for dera | 15000
1250
1250
132
1500
e
Illy 18 power
, 50Hz
sting), frequence | 1400
1400
155
1770
units | 1600
1600
175
2000 | 20000
 1800
 1800
 197
 2250 | 2000
 2000
 217
 2500 | 2240
2240
245
2800 | 2500
2500
2500
276
3150 | 2800
2800
2800
300
3430 | 3000
3000
328
3750 | 3150
3150
345
3950 | 3550
3550
382
4370 | 31000
4000
4000
424
4840 | 4500
4500
486
5560 | 4800
500
5720 | | 800
800
87
1000 | 900
900
100
1150
6-stage | 1000
1000
109
1250
1250
serial conne
Three-p
Single-p
6 (-10% ~ -4 | 1120
1120
120
1370
6.6kV
0%/1 minut
ection, total
bhase 6.6kV,
ohase 220V, | 15000
1250
1250
132
1500
e
Illy 18 power
,50Hz
,50Hz
,ting), freque | 1400
1400
155
1770
units | 1600
1600
175
2000 | 20000
 1800
 1800
 197
 2250
 75
 54 | 2000
2000
217
2500 | 2240
2240
245
2800 | 2500
2500
2500
276
3150 | 2800
2800
2800
300
3430 | 3000
3000
328
3750 | 3150
3150
345
3950 | 3550
3550
382
4370 | 31000
4000
4000
424 | 4500
4500
486
5560
13000
135 | 4800
500 | | 800
800
87
1000 | 900
900
100
1150
6-stage | 1000
1000
109
1250
120
serial connor
Three-p
Single-p
6 (-10% ~ -4 | 1120
1120
120
1370
6.6kV
00%/1 minut
ection, total
bhase 6.6kV,
bhase 220V,
0% for dera | 15000
1250
1250
132
1500
e
Illy 18 power
,50Hz
,50Hz
,ting), freque | 1400
1400
155
1770
units
ency: ±10%
68
42 | 1600
1600
175
2000 | 20000
 1800
 1800
 197
 2250
 75
 54 | 2000
 2000
 217
 2500
 500
 60 | 2240
2240
245
2800 | 2500
2500
2500
276
3150 | 2800
2800
2800
300
3430 | 3000
3000
328
3750 | 3150
3150
345
3950 | 3550
3550
382
4370 | 31000
4000
4000
424
4840 | 4500
4500
486
5560
13000
135 | 4800
500
5720 | | 800
800
87
1000
Vo
24
1000
1000 | 900
900
100
1150
6-stage
460
27
00
1120 | 1000
1000
109
1250
1250
serial conne
Three-p
Single-
6 (-10% ~ -4
00
30 | 1120
1120
120
1370
6.6kV
9%/1 minutection, total
bhase 6.6kV,
0% for dera
58
33.6 | 15000
1250
1250
1250
132
1500
e
e
1500
e
1500
e
ting), freque
500
37.5
1500
1600 | 1400
1400
155
1770
units
ency: ±10%
68
42
000
1800
1800 | 1600
1600
175
2000
00
48
2000
2000 | 20000
1800
1800
197
2250
75
54
20
2240 | 2000
2000
217
2500
500
60
000
2500
2500 | 2240
2240
245
2800
85
67.2 | 250
2500
2500
276
3150
00
75
3150
3150 | 2800
2800
300
3430
10
84
255
3550 | 3000
3000
328
3750
328
3750 | 3150
3150
345
3950
120
94.5
4500
4500 | 3550
3550
382
4370
000
106.5 | 31000
4000
4000
4200
424
4840
120
310
5600
5600 | 4500
4500
486
5560
13000
135
00
6300
6300 | 4800
500
5720
5720 | | 800
800
87
1000
Vc
24
1000
1000
76 | 900
900
100
1150
6-stage: ±109
460
27
00
1120
87 | 1000
1000
109
1250
1250
1250
1250
1250
30
30 | 1120
1120
120
1370
6.6kV
0%/1 minut
ection, total
ohase 6.6kV,
ohase 220V,
0% for dera
58
33.6 | 15000
1250
1250
1250
132
1500
e
lly 18 power
5.50Hz
5.50Hz
5.000
37.5
150
1600
1600 | 1400
1400
155
1770
units
ency: ±10%
68
42
000
1800
130 | 1600
1600
175
2000
00
48
2000
2000
144 | 20000
1800
1800
197
2250
75
54
20
2240
2240
160 |
2000
2000
217
2500
2500
60
60
000
2500
2500
192 | 2240
2240
245
2800
85
67.2
2800
2800
200 | 250
2500
2500
276
3150
00
75
3150
3150
230 | 2800
2800
2800
300
3430
10
84
25
3550
3550
260 | 3000
3000
328
3750
3750
000
90
4000
4000
288 | 3150
3150
345
3950
120
94.5
4500
4500
330 | 3550
3550
382
4370
000
106.5
5000
5000
360 | 31000
4000
4000
424
4840
120
310
5600
410 | 13000
13500
13500
13600
13500
13500
13500
13500 | 144
144
7100
7100
500 | | 800
800
87
1000
Vo
24
1000
1000 | 900
900
100
1150
6-stage
460
27
00
1120 | 1000
1000
109
1250
1250
serial conne
Three-p
Single-
6 (-10% ~ -4
00
30 | 1120
1120
120
1370
6.6kV
0%/1 minut
ection, total
shase 6.6kV,
0% for dera-
58
33.6 | 15000
1250
1250
1250
132
1500
e
e
1500
e
1500
e
ting), freque
500
37.5
1500
1600 | 1400
1400
155
1770
units
ency: ±10%
68
42
000
1800
1800 | 1600
1600
175
2000
00
48
2000
2000 | 20000
1800
1800
197
2250
75
54
20
2240 | 2000
2000
217
2500
500
60
000
2500
2500 | 2240
2240
245
2800
85
67.2 | 250
2500
2500
276
3150
00
75
3150
3150 | 2800
2800
300
3430
10
84
25
3550 | 3000
3000
328
3750
328
3750 | 3150
3150
345
3950
120
94.5
4500
4500 | 3550
3550
382
4370
000
106.5 | 31000
4000
4000
4200
424
4840
120
310
5600
5600 | 4500
4500
486
5560
13000
135
00
6300
6300 | 4800
500
5720
5720 | | 800
800
87
1000
Vc
24
100
1000
1000
76 | 900
900
100
1150
6-stage: ±109
460
27
00
1120
87 | 1000
1000
109
1250
1250
1250
Serial connuc
Three-p
Single-f
6 (-10% ~ -4
00
30
1250
1250
95
1650 | 1120
1120
120
1370
6.6kV
0%/1 minut
ection, total
ohase 6.6kV,
ohase 220V,
0% for dera
58
33.6 | 15000
1250
1250
1250
132
132
1500
e
e
lly 18 power
50Hz
titing), freque
600
37.5
150
1600
1600
120
2000 | 1400
1400
155
1770
units
ency: ±10%
68
42
000
1800
130 | 1600
1600
175
2000
00
48
2000
2000
144 | 20000
1800
1800
197
2250
75
54
20
2240
2240
160 | 2000
2000
217
2500
2500
60
60
000
2500
2500
192 | 2240
2240
245
2800
85
67.2
2800
2800
200 | 250
2500
2500
276
3150
00
75
3150
3150
230 | 2800
2800
2800
300
3430
10
84
25
3550
3550
260 | 3000
3000
328
3750
3750
000
90
4000
4000
288 | 3150
3150
345
3950
120
94.5
4500
4500
330 | 3550
3550
382
4370
000
106.5
5000
5000
360 | 31000
4000
4000
424
4840
120
310
5600
410 | 13000
13500
13500
13600
13500
13500
13500
13500 | 144
144
7100
7100
500 | | 800
800
87
1000
Vc
24
100
1000
1000
76 | 900
900
100
1150
6-stage
bltage: ±109
46
27
00
1120
1120
87
1500 | 1000 1000 1000 109 1250 1250 serial connection of the | 1120 1120 1120 1120 120 1370 6.6kV)%/I minutection, totalohase 220V, 0% for dera 58 33.6 1400 1400 100 1750 10kV 0%/I minutection, totalohase 200V | 15000
1250
1250
1250
132
1500
e
elly 18 power
50Hz
50Hz
50Hz
1600
1600
120
2000
e | 1400
1400
155
1770
units
ency: ±10%
68:
42
000
1800
1800
130
2250 | 1600
1600
175
2000
00
48
2000
2000
144 | 20000
1800
1800
197
2250
75
54
20
2240
2240
160 | 2000
2000
217
2500
2500
60
60
000
2500
2500
192 | 2240
2240
245
2800
85
67.2
2800
2800
200 | 250
2500
2500
276
3150
00
75
3150
3150
230 | 2800
2800
2800
300
3430
10
84
25
3550
3550
260 | 3000
3000
328
3750
3750
000
90
4000
4000
288 | 3150
3150
345
3950
120
94.5
4500
4500
330 | 3550
3550
382
4370
000
106.5
5000
5000
360 | 31000
4000
4000
424
4840
120
310
5600
410 | 13000
13500
13500
13600
13500
13500
13500
13500 | 144
144
7100
7100
500 | | 800
800
87
1000
Vc
24
100
1000
1000
76 | 900
900
100
1150
6-stage
bltage: ±109
46
27
00
1120
1120
87
1500 | 1000 1000 1000 109 1250 1250 serial connumber of 1000 30 1250 1250 1250 95 1650 1260 serial connumber of 1250 1260 1270 1270 1270 1270 1270 1270 1270 127 | 1120 1120 1120 1370 6.6kV)%/1 minutection, totalohase 6.6kV, ohase 6.6kV, ohase 6.6kV, ohase 2.00V, 0% for dera 58 33.6 1400 1400 1750 10kV)%/1 minutection, totalohase 10kV, | 15000
1250
1250
1250
132
1500
e
lly 18 power
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.600
1600
1600
120
2000
e
e
lly 18 power
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz | 1400
1400
155
1770
units
ency: ±10%
68:
42
000
1800
1800
130
2250 | 1600
1600
175
2000
00
48
2000
2000
144 | 20000
1800
1800
197
2250
75
54
20
2240
2240
160 | 2000
2000
217
2500
2500
60
60
000
2500
2500
192 | 2240
2240
245
2800
85
67.2
2800
2800
200 | 250
2500
2500
276
3150
00
75
3150
3150
230 | 2800
2800
2800
300
3430
10
84
25
3550
3550
260 | 3000
3000
328
3750
3750
000
90
4000
4000
288 | 3150
3150
345
3950
120
94.5
4500
4500
330 | 3550
3550
382
4370
000
106.5
5000
5000
360 | 31000
4000
4000
424
4840
120
310
5600
410 | 13000
13500
13500
13600
13500
13500
13500
13500 | 144
144
7100
7100
500 | | 800
800
87
1000
Vc
24
1000
1000
76
1300 | 900
900
100
1150
6-stage: ±109
46
27
00
1120
87
1500 | 1000 1000 109 1250 1250 126 serial conne Three-p 5ingle-p 6 (-10% ~ -4 00 30 1250 1250 95 1650 120 serial conne Three-p Single-p | 1120 1120 1120 120 1370 6.6kV 0%/1 minutection, total obase 6.6kV, 00% for dera- 58 33.6 1400 1400 100 1750 10kV | 15000
1250
1250
1250
132
1500
e
lly 18 power
50Hz
50Hz
50Hz
1500
37.5
150
1600
120
2000
e
elly 18
power
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50H | 1400
1400
155
1770
runits
ency: ±10%
68
42
000
1800
130
2250 | 1600
1600
175
2000
00
48
2000
2000
144
2500 | 20000
1800
1800
197
2250
75
54
20
2240
2240
160 | 2000
2000
217
2500
2500
60
60
000
2500
2500
192 | 2240
2240
245
2800
85
67.2
2800
2800
200 | 250
2500
2500
276
3150
00
75
3150
3150
230 | 2800
2800
2800
300
3430
10
84
25
3550
3550
260 | 3000
3000
328
3750
3750
000
90
4000
4000
288 | 3150
3150
345
3950
120
94.5
4500
4500
330 | 3550
3550
382
4370
000
106.5
5000
5000
360 | 31000
4000
4000
424
4840
120
310
5600
410 | 13000
13500
13500
13600
13500
13500
13500
13500 | 144
144
7100
7100
500 | | 800
800
87
1000
Vc
24
1000
1000
76
1300 | 900
900
100
1150
6-stage: ±109
46
27
00
1120
87
1500 | 1000 1000 109 1250 1250 1250 126(-10% ~-4 1250 1250 1250 1250 1250 1250 1250 1250 | 1120 1120 1120 1370 6.6kV)9%/I minute ection, total shase 6.6kV, ohase 220V, off or dera 33.6 1400 1400 100 1750 10kV)9%/I minute ection, total shase 10kV, ohase 220V, off or dera 30%/I minute ection, total shase 20V, off or dera 30%/I minute ection, total shase 20V, off or dera 30%/I minute ection for the shase 20V, off or dera 30%/I minute ection for the shase 20V, off or dera 30%/I minute ection for the shase 20V, off or dera 30%/I minute ection for the shase 20V, off or dera 30%/I minute ection for the shade and sh | 15000
1250
1250
1250
132
1500
e
lly 18 power
50Hz
50Hz
50Hz
1500
37.5
150
1600
120
2000
e
elly 18 power
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50Hz
50H | 1400
1400
155
1770
units
ency: ±10%
68:
42
000
1800
1800
130
2250 | 1600
1600
175
2000
00
48
2000
2000
144
2500 | 20000
1800
1800
197
2250
75
54
20
2240
2240
160 | 2000
2000
217
2500
2500
60
60
000
2500
2500
192 | 2240
2240
245
2800
85
67.2
2800
2800
200 | 250
2500
2500
276
3150
00
75
3150
3150
230
4000 | 2800
2800
2800
300
3430
10
84
25
3550
3550
260 | 3000
3000
328
3750
3750
000
90
4000
4000
288 | 3150
3150
345
3950
120
94.5
4500
4500
330
5700 | 3550
3550
382
4370
000
106.5
5000
5000
360 | 31000
4000
4000
424
4840
120
310
5600
410 | 13000
13500
13500
13600
13500
13500
13500
13500 | 144
144
7100
7100
500 | | 800
800
87
1000
Vc
24
1000
1000
76
1300 | 900
900
1150
1150
6-stage: ±109
46
27
00
1120
1120
1120
10-stage: ±109 | 1000 1000 1000 109 1250 1250 126 serial connection of the control contro | 1120 1120 1120 1120 1370 6.6kV)%/I minutection, total obtase 2.00V, 0% for dera 58 33.6 1400 1400 100 1750 10kV 0%/I minutection, total obtase 2.00V, 0% for dera 58 33.6 | 15000
1250
1250
1250
132
132
1500
e
e
lly 18 power
50Hz
50Hz
50Hz
1600
1600
120
2000
e
e
lly 18
power
50Hz
50Hz
1500
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600 | 1400
1400
155
1770
runits
ency: ±10%
68
42
000
1800
130
2250 | 1600
1600
175
2000
00
48
2000
2000
144
2500
7000
60 | 20000
1800
1800
197
2250
75
54
20
2240
2240
160 | 2000
2000
217
2500
2500
60
000
2500
2500
2500
192
3350 | 2240
2240
245
2800
85
67.2
2800
2800
200
3500 | 250
2500
2500
276
3150
00
75
3150
3150
230
4000 | 2800
2800
2800
300
3430
10
84
25
3550
3550
260 | 3000
3000
328
3750
3750
9000
90
90
90
4000
4000
288
5000 | 3150
3150
345
3950
120
94.5
4500
4500
330
5700 | 3550
3550
382
4370
000
106.5
5000
5000
360
6250 | 31000
4000
4000
4200
424
4840
120
310
5600
5600
410
7000 | 4500
4500
486
5560
13000
135
00
6300
6300
456
7900 | 144
 144
 7100
 7100
 7500
 8600 | | 800
800
87
1000
Vc
24
100
1000
76
1300
Vc | 900
900
100
1150
6-stage: ±109
466
27
00
1120
1120
87
1500
10-stage: ±109
48
33.6 | 1000 1000 1000 109 1250 1250 1250 1250 1250 30 1250 1250 1250 1250 1250 1250 1250 125 | 1120 1120 1120 120 1370 6.6kV)%/1 minutection, total bhase 6.6kV, 00% for dera 58 33.6 1400 1400 1750 10kV)%/1 minutection, total bhase 220V, 0% for dera 53 42 | 15000 1250 1250 1250 1250 132 1500 e lly 18 power 50Hz 50Hz 1500 37.5 150 1600 120 2000 e e lily 30 powe 50Hz 50Hz 50Hz 600 48 | 1400
1400
155
1770
1000
1800
1800
1800
130
2250
1800
1800
130
2250 | 1600
1600
175
2000
00
48
2000
2000
144
2500
7000
60
23000 | 20000
1800
1800
197
2250
75
54
20
2240
2240
2240
260
2800 | 2000
2000
217
2500
500
60
000
2500
2500
192
3350 | 2240
2240
245
2800
85
67.2
2800
2800
200
3500 | 250
2500
2500
276
3150
00
75
3150
3150
3150
230
4000 | 2800
2800
2800
300
3430
100
84
25
3550
260
4500 | 3000
3000
3000
328
3750
000
90
90
000
4000
4000
288
5000 | 3150
3150
345
3350
345
3950
120
94.5
4500
4500
330
5700 | 3550
3550
382
4370
106.5
5000
5000
360
6250 | 31000
4000
4000
424
4840
120
310
5600
5600
410
7000 | 13000
4500
486
5560
13000
135
00
6300
456
7900 | 144
 144
 7100
 7100
 500
 8600
 20000
 213 | | 800
800
87
1000
Vc
24
1000
1000
76
1300
Vc | 900
900
1150
1150
6-stage: ±109
46
27
00
1120
1120
87
1500
10-stage: ±109
48
33.6 | 1000 1000 1000 1250 1250 1250 1250 1250 | 1120 1120 1120 1370 6.6kV)9%/I minuta shase 6.6kV, ohase 220V, o% for dera 58 33.6 1400 1400 105 10kV)9%/I minuta ection, tota ohase 10kV, ohase 220V, o% for dera 42 100 11600 | 15000
1250
1250
1250
1250
132
132
1500
e
elly 18 power
50Hz
50Hz
1600
1600
1600
1200
2000
e
elly 30 power
50Hz
50Hz
1500
1600
1600
1200
2000
48 | 1400 1400 1400 155 1770 runits ency: ±10% 68 42 2000 1800 1800 130 2250 r units ency: ±10% | 1600
1600
175
2000
00
48
2000
2000
144
2500
7000
60
23000
2240 | 20000
1800
1800
197
2250
75
54
20
2240
2240
2240
260
2800 | 2000
2000
217
2500
2500
60
000
2500
2500
2500
192
3350
8000
75 | 2240
2240
245
2800
85
67.2
2800
2800
200
3500 | 250
2500
2500
276
3150
00
75
3150
3150
230
4000
10000
94.5 | 2800
2800
2800
300
3430
3430
10
84
25
3550
3550
260
4500 | 3000
3000
3000
328
3750
000
90
000
4000
4000
4000
288
5000 | 3150
3150
3150
345
3950
120
94.5
4500
4500
4500
5700 | 3550
3550
362
4370
106.5
5000
5000
360
6250
15000
150 | 31000
4000
4000
4000
424
4840
120
310
5600
5600
410
7000
17000 | 13000
13000
13500
13500
13500
13500
13500
13500
13500
13500
13500
13500
13500
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
130000
13000
13000
13000
13000
13000
13000
13000
13000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130 | 144
7100
500
5720
144
7100
500
8600
20000
213 | | 800
800
87
1000
Vc
24
1000
1000
76
1300
Vc | 900
900
100
1150
6-stage: ±109
466
27
00
1120
1120
1120
10-stage: ±109
48
33.6 | 1000 1000 109 1250 1250 1250 1250 126 (-10% ~ -4 00 1250 1250 1250 1250 1250 1250 1250 1 | 1120
1120 1120 1120 1370 6.6kV)9%/I minute ection, tota shase 6.6kV, ohase 220V, 0% for dera 58 33.6 1400 1400 100 1750 10kV 09%/I minute ection, tota ohase 220V, 0% for dera 53 42 000 1600 1600 | 15000
1250
1250
1250
132
132
1500
e
elly 18 power
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz
.50Hz | 1400 1400 1400 155 1770 units ency: ±10% 68 42 000 1800 1800 130 2250 r units ency: ±10% | 1600
1600
175
2000
00
48
2000
2000
144
2500
7000
60
23000
2240
2240 | 20000
1800
1800
197
2250
75
54
20
2240
2240
2240
260
2800
67.2 | 2000
2000
217
2500
2500
60
000
2500
2500
2500
192
3350
8000
75 | 2240
2240
245
2800
85
67.2
2800
2800
200
3500
84
44
300
3150 | 250
2500
2500
270
3150
00
75
3150
3150
230
4000
10000
94.5
000
3550
3550 | 2800
2800
2800
300
3430
10
84
25
3550
3550
260
4500
106.5 | 3000
3000
3000
328
3750
90
90
90
90
4000
4000
288
5000
120
4500 | 3150
3150
3150
345
3950
120
94.5
4500
4500
330
5700
14000
135
40000
5000 | 3550
3550
382
4370
1000
106.5
5000
5000
360
6250
15000
150 | 31000
4000
4000
4200
424
4840
120
310
5600
5600
410
7000
168
6300
6300 | 13000
4500
4500
486
5560
13000
135
00
6300
6300
456
7900
189
50000
7100
7100 | 144
7100
7100
8600
20000
213
8000
8000 | | 800
800
87
1000
1000
1000
1000
1300
Vc | 900
900
1150
1150
6-stage: ±109
46
27
00
1120
1120
87
1500
10-stage: ±109
48
33.6 | 1000 1000 1000 1250 1250 1250 1250 1250 | 1120 1120 1120 1370 6.6kV)9%/I minuta shase 6.6kV, ohase 220V, o% for dera 58 33.6 1400 1400 105 10kV)9%/I minuta ection, tota ohase 10kV, ohase 220V, o% for dera 42 100 11600 | 15000
1250
1250
1250
1250
132
132
1500
e
elly 18 power
50Hz
50Hz
1600
1600
1600
1200
2000
e
elly 30 power
50Hz
50Hz
1500
1600
1600
1200
2000
48 | 1400 1400 1400 155 1770 runits ency: ±10% 68 42 2000 1800 1800 130 2250 r units ency: ±10% | 1600
1600
175
2000
00
48
2000
2000
144
2500
7000
60
23000
2240 | 20000
1800
1800
197
2250
75
54
20
2240
2240
2240
260
2800 | 2000
2000
217
2500
2500
60
000
2500
2500
2500
192
3350
8000
75 | 2240
2240
245
2800
85
67.2
2800
2800
200
3500 | 250
2500
2500
276
3150
00
75
3150
3150
230
4000
10000
94.5 | 2800
2800
2800
300
3430
3430
10
84
25
3550
3550
260
4500 | 3000
3000
3000
328
3750
000
90
000
4000
4000
4000
288
5000 | 3150
3150
3150
345
3950
120
94.5
4500
4500
4500
5700 | 3550
3550
362
4370
106.5
5000
5000
360
6250
15000
150 | 31000
4000
4000
4000
424
4840
120
310
5600
5600
410
7000
17000 | 13000
13000
13500
13500
13500
13500
13500
13500
13500
13500
13500
13500
13500
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
13000
130000
13000
13000
13000
13000
13000
13000
13000
13000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130000
130 | 144
7100
500
5720
144
7100
500
8600
20000
213 | | 800
800
87
1000
1000
1000
76
1300
120
30 | 900 900 100 1150 1150 6-stage: ±109 46 27 00 1120 1120 87 1500 10-stage: ±109 48 33.6 | 1000 1000 1000 109 1250 1250 Serial connection of the | 1120 1120 1120 1120 1370 6.6kV)9%/I minutection, total observations of the section of the section, total observations of the section | 15000 1250 1250 1250 1250 132 1500 e lilly 18 power .50Hz . | 1400 1400 1400 155 1770 units ency: ±10% 68 42 000 1800 130 2250 r units ency: ±10% 54 2000 2000 131 | 1600
1600
175
2000
00
48
2000
2000
144
2500
7000
60
23000
2240
144 | 20000
1800
1800
197
2250
75
54
20
2240
2240
2240
260
2800
67.2 | 2000
2000
217
2500
2500
60
000
2500
2500
2500
192
3350
8000
75 | 2240
2240
2245
2800
85
67.2
2800
2800
200
3500
84
3150
3150
210 | 250
2500
2500
276
3150
00
75
3150
230
4000
10000
94.5
300
3550
3550
236 | 2800
2800
300
300
3430
100
84
25
3550
260
4500
106.5 | 3000
3000
3000
328
3750
000
90
000
4000
4000
288
5000
13000
120
4500
299 | 3150
3150
3150
345
3950
120
94.5
4500
4500
4500
135
40000
5000
5000
328 |
3550
3550
382
4370
1000
106.5
5000
5000
360
6250
15000
150
5600
5600
367 | 31000
4000
4000
4200
424
4840
120
310
5600
5600
410
7000
168
6300
6300
415 | 13000
4500
4500
486
5560
13000
6300
6300
456
7900
189
50000
7100
451 | 144
7100
7100
500
500
8600
20000
213
8000
8000
500 | | 800
800
87
1000
VC
24
1000
1000
76
1300
VC
30 | 900 900 100 1150 1150 6-stage: ±109 46 27 00 1120 1120 1120 87 1500 10-stage: ±109 48 33.6 1250 1250 87 1650 | 1000 1000 1000 1109 1250 1250 1250 1250 1250 1250 1250 1250 | 1120 1120 1120 1120 1370 6.6kV)9%/I minute ection, tota shase 6.6kV, ohase 220V, 0% for dera 58 33.6 1400 1400 100 1750 10kV)9%/I minute ection, tota ohase 10kV, ohase 220V, 0% for dera 53 42 100 1600 1600 105 2000 11kV | 15000 1250 1250 1250 1250 1250 1250 132 132 1500 e e lly 18 power 50Hz 50Hz 1500 1600 120 2000 e e e lly 18 power 50Hz 150Hz 150Hz 1600 1600 120 2000 48 1800 1800 1180 1800 1180 | 1400 1400 1400 155 1770 runits ency: ±10% 68 42 100 1800 1800 130 2250 r units ency: ±10% 54 2000 2000 131 2500 | 1600
1600
175
2000
00
48
2000
2000
144
2500
7000
60
23000
2240
144 | 20000
1800
1800
197
2250
75
54
20
2240
2240
2240
260
2800
67.2 | 2000
2000
217
2500
2500
60
000
2500
2500
2500
192
3350
8000
75 | 2240
2240
2245
2800
85
67.2
2800
2800
200
3500
84
3150
3150
210 | 250
2500
2500
276
3150
00
75
3150
230
4000
10000
94.5
300
3550
3550
236 | 2800
2800
300
300
3430
100
84
25
3550
260
4500
106.5 | 3000
3000
3000
328
3750
000
90
000
4000
4000
288
5000
13000
120
4500
299 | 3150
3150
3150
345
3950
120
94.5
4500
4500
4500
135
40000
5000
5000
328 | 3550
3550
382
4370
1000
106.5
5000
5000
360
6250
15000
150
5600
5600
367 | 31000
4000
4000
4200
424
4840
120
310
5600
5600
410
7000
168
6300
6300
415 | 13000
4500
4500
486
5560
13000
6300
6300
456
7900
189
50000
7100
451 | 144
7100
7100
500
500
8600
20000
213
8000
8000
500 | | 800
800
87
1000
1000
1000
76
1300
120
30 | 900 900 100 1150 1150 6-stage: ±109 46 27 00 1120 1120 1120 87 1500 10-stage: ±109 48 33.6 1250 1250 87 1650 | 1000 1000 1000 109 1250 1250 serial conner Three-F Single-F 6 (-10% ~ -4 00 1250 1250 95 1650 1260 1270 1270 1270 1270 1270 1270 1270 127 | 1120 1120 1120 1120 1370 6.6kV)96/1 minute ection, total object of dera section, total object of dera section, total object of dera section, total object object of dera section, total object | 15000 1250 1250 1250 1250 132 1500 e lly 18 power 50Hz 50Hz 50Hz 150 1600 120 2000 e lly 30 power 50Hz 50Hz 1800 1800 118 2250 e | 1400 1400 1400 155 1770 runits ency: ±10% 68 42 100 1800 1800 130 2250 r units ency: ±10% 54 2000 2000 131 2500 | 1600
1600
175
2000
00
48
2000
2000
144
2500
7000
60
23000
2240
144 | 20000
1800
1800
197
2250
75
54
20
2240
2240
2240
260
2800
67.2 | 2000
2000
217
2500
2500
60
000
2500
2500
2500
192
3350
8000
75 | 2240
2240
2245
2800
85
67.2
2800
2800
200
3500
84
3150
3150
210 | 250
2500
2500
276
3150
00
75
3150
230
4000
10000
94.5
300
3550
3550
236 | 2800
2800
300
300
3430
100
84
25
3550
260
4500
106.5 | 3000
3000
3000
328
3750
000
90
000
4000
4000
288
5000
13000
120
4500
299 | 3150
3150
3150
345
3950
120
94.5
4500
4500
4500
135
40000
5000
5000
328 | 3550
3550
382
4370
1000
106.5
5000
5000
360
6250
15000
150
5600
5600
367 | 31000
4000
4000
4200
424
4840
120
310
5600
5600
410
7000
168
6300
6300
415 | 13000
4500
4500
486
5560
13000
6300
6300
456
7900
189
50000
7100
451 | 144
7100
7100
500
500
8600
20000
213
8000
8000
500 | | 800
800
87
1000
VC
24
1000
1000
76
1300
VC
30 | 900 900 100 1150 1150 6-stage: ±109 46 27 00 1120 1120 1120 87 1500 10-stage: ±109 48 33.6 1250 1250 87 1650 | 1000 1000 1000 109 1250 1250 Serial conner Three-p 5ingle-p 6 (-10% ~ - 4 00 30 1250 1250 95 1650 1200 2 serial conn Three-p 5ingle-p 6 (-10% ~ - 4 00 37.5 180 1400 1400 92 1750 | 1120 1120 1120 1120 1370 6.6kV)96/I minutection, total observations of the section of the section, total observations of the section | 15000 1250 1250 1250 1250 1250 132 1500 e lilly 18 power .50Hz .5 | 1400 1400 1400 155 1770 runits ency: ±10% 68 42 100 1800 1800 130 2250 r units ency: ±10% 54 2000 2000 131 2500 | 1600
1600
175
2000
00
48
2000
2000
144
2500
7000
60
23000
2240
144 | 20000
1800
1800
197
2250
75
54
20
2240
2240
2240
260
2800
67.2 | 2000
2000
217
2500
2500
60
000
2500
2500
2500
192
3350
8000
75 | 2240
2240
2245
2800
85
67.2
2800
2800
200
3500
84
3150
3150
210 | 250
2500
2500
276
3150
00
75
3150
230
4000
10000
94.5
300
3550
3550
236 | 2800
2800
300
300
3430
100
84
25
3550
260
4500
106.5 | 3000
3000
3000
328
3750
000
90
000
4000
4000
288
5000
13000
120
4500
299 | 3150
3150
3150
345
3950
120
94.5
4500
4500
4500
135
40000
5000
5000
328 | 3550
3550
382
4370
1000
106.5
5000
5000
360
6250
15000
150
5600
5600
367 | 31000
4000
4000
4200
424
4840
120
310
5600
5600
410
7000
168
6300
6300
415 | 13000
4500
4500
486
5560
13000
6300
6300
456
7900
189
50000
7100
451 | 144
7100
7100
500
500
8600
20000
213
8000
8000
500 | | 800
800
87
1000
Vc
24
1000
1000
76
1300
Vc
30
1120
79
1500 | 900 900 1100 1150 6-stage: ±109 46 27 000 1120 1120 87 1500 10-stage: ±109 48 33.6 1250 1250 1250 10-stage | 1000 1000 1000 109 1250 1250 1250 1260 1250 30 1250 1250 1250 95 1650 1260 1270 1270 1270 1270 1270 1270 1270 127 | 1120 1120 1120 1120 120 1370 6.6kV)%/I minutection, total obtase 6.6kV, obtase 6.6kV, obtase 6.6kV, obtase 6.6kV, obtase 6.6kV, obtase 6.0kV, | 15000 1250 1250 1250 1250 1250 132 1500 e lly 18 power 50Hz 50Hz 50Hz 1600 1600 120 2000 e lly 30 power 50Hz 50Hz 50Hz 50Hz 50Hz 50Hz 50Hz 50Hz | 1400 1400 1400 155 1770 runits ency: ±10% 68 42 100 1800 1800 130 2250 r units ency: ±10% 54 2000 2000 131 2500 | 1600
1600
175
2000
00
48
2000
2000
144
2500
7000
60
23000
2240
2240
144
2800 | 20000
1800
1800
197
2250
75
54
20
2240
2240
2240
260
2800
67.2 | 2000
2000
217
2500
2500
60
000
2500
2500
2500
192
3350
8000
75 | 2240
2240
2245
2800
85
67.2
2800
2800
200
3500
84
3150
3150
210 | 250
2500
2500
276
3150
00
75
3150
230
4000
10000
94.5
300
3550
3550
236 | 2800
2800
300
300
3430
100
84
25
3550
260
4500
106.5 | 3000
3000
3000
328
3750
000
90
000
4000
4000
4000
288
5000
120
4500
4500
299 | 3150
3150
3150
345
3950
120
94.5
4500
4500
4500
135
40000
5000
5000
328 | 3550
3550
382
4370
1000
106.5
5000
5000
360
6250
15000
150
5600
5600
367 | 31000
4000
4000
4200
424
4840
120
310
5600
5600
410
7000
168
6300
6300
415 | 13000
4500
4500
486
5560
13000
6300
6300
456
7900
189
50000
7100
451 | 144
7100
7100
500
500
8600
20000
213
8000
8000
500 | | 800
800
87
1000
Vc
24
1000
1000
76
1300
Vc
30
1120
1120
79
1500 | 900 900 1100 1150 1150 6-stage: ±109 466 27 00 1120 1120 1120 1120 87 1500 10-stage: ±109 48 33.6 1250 1250 87 1650 10-stage: ±109 48 48 | 1000 1000 1000 1109 1250 1250 1250 1250 1250 1250 1250 1250 | 1120 1120 1120 1120 1120 1370 6.6kV)9%/I minutection, total obase 220V, own for dera 58 33.6 1400 1400 100 1750 10kV)9%/I minutection, total obase 120V, own for dera 53 42 000 1600 1600 105 2000 11kV 09%/I minutection, total obase 120V, own for dera 53 42 000 1505 2000 1600 1600 1055 2000 1055 2000 1055 2000 1055 2000 1056 2000 1057 2000 1058 2007 2007 307 308 308 308 308 308 309 309 309 309 309 309 309 309 309 309 | 15000 1250 1250 1250 1250 1250 1250 1250 | 1400 1400 1400 155 1770 units ency: ±10% 68 42 000 1800 1800 130 2250 r units ency: ±10% 54 2000 2000 131 2500 r units | 1600
1600
175
2000
00
48
2000
2000
144
2500
7000
60
23000
2240
240
144
2800 | 20000
1800
1800
197
2250
75
54
20
2240
2240
2240
2600
2800
67.2
2500
2500
170
3250 | 2000
2000
217
2500
2500
60
000
2500
2500
2500
192
3350
8000
75
2800
2800
184
3500 |
2240
2240
245
2800
85
67.2
2800
2800
200
3500
3150
3150
210
4000 | 250
2500
2500
2500
3150
3150
3150
3150
3150
230
4000
10000
94.5
000
3550
3550
3550
236
4500 | 2800
2800
2800
300
3430
3430
10
84
25
3550
260
4500
4000
4000
260
4950 | 3000
3000
3000
328
3750
90
90
90
90
4000
4000
4000
288
5000
120
4500
299
5700 | 3150
3150
3150
345
3950
120
94.5
4500
4500
4500
14000
5000
5000
5000
328
6250 | 3550
3550
382
4370
1000
106.5
5000
5000
360
6250
15000
150
5600
367
7000 | 31000
4000
4000
4204
4840
120
310
5600
5600
410
7000
168
6300
6300
415
7900 | 13000
13000
13500
13500
13500
6300
6300
456
7900
18000
7100
7100
7100
451
8600 | 144
 144
 7100
 500
 5720
 144
 7100
 500
 8600
 20000
 213
 8000
 8000
 500
 9550
 20000 | | 800
800
87
1000
Vo
24
1000
1000
76
1300
Vo
30
1120
1120
79
1500 | 900 900 100 1150 1150 6-stage: ±109 466 27 00 1120 1120 87 1500 10-stage: ±109 488 33.6 1250 1250 87 1650 10-stage: ±109 488 37.5 | 1000 1000 1000 1100 11250 1250 1250 1250 | 1120 1120 1120 1120 1120 1370 6.6kV)9%/I minute cettion, total shase 6.6kV, ohase 220V, o% for dera 58 33.6 1400 1400 100 100 100 1750 10kV)9%/I minute ection, total ohase 12VV, ohase 22VV, of for dera 53 42 100 1600 1600 105 2000 11kV 09%/I minute of for dera 105 2000 11kV 09%/I minute of for dera 105 2000 11kV 09%/I minute of for dera 105 2000 105 2000 0105 006 006 007 007 007 007 008 007 008 008 009 009 009 009 009 009 009 009 | 15000 1250 1250 1250 1250 1250 1250 132 132 1500 e e lly 18 power 50Hz 50Hz 1600 1600 1200 2000 2000 48 1800 1180 1180 1180 2250 e elly 30 power 50Hz 50Hz 50Hz 50Hz 50Hz 50Hz 50Hz 50Hz | 1400 1400 1400 155 1770 units ency: ±10% 68 42 000 1800 130 2250 r units 54 2000 2000 131 2500 | 1600
1600
175
2000
00
48
2000
2000
144
2500
7000
60
23000
2240
2240
144
2800 | 20000
1800
1800
197
2250
75
54
20
2240
2240
2240
260
2800
67.2 | 2000
 2000
 217
 2500
 2500
 60
 000
 2500
 2500
 2500
 192
 3350
 8000
 75
 2800
 2800
 2800
 184
 3500 | 2240
2240
245
2800
85
67.2
2800
2800
200
3500
3150
3150
210
4000 | 250
2500
2500
276
3150
00
75
3150
3150
230
4000
10000
94.5
000
3550
3550
236
4500 | 2800
2800
300
300
3430
100
84
25
3550
260
4500
106.5 | 3000
3000
3000
328
3750
90
90
000
4000
4000
4000
288
5000
120
4500
4500
299
5700 | 3150
3150
3150
345
3950
94.5
4500
4500
4500
4500
135
40000
5000
5000
5000
328
6250 | 3550
3550
362
4370
106.5
5000
5000
5000
6250
1500
150
5600
5600
367
7000 | 31000
4000
4000
4000
424
4840
120
310
5600
5600
410
7000
168
6300
6300
415
7900 | 13000
4500
4500
486
5560
13000
135
00
6300
6300
456
7900
189
50000
7100
7100
7100
451
8600 | 144 | #### Denomination Rules The DC voltage of SANYUDRIVE-A8S series has a large margin; they are more suitable for the occasions requiring multi-point synchronous drive and the occasions with higher requirements on deceleration time, such as belt conveyor and other types of loads. #### General Specification | Harmonic con | tent | Meet the IEEE Std 519-1992,GB/T 14549-93 | | | | | | | | |--------------------|-----------------------------------|---|--|--|--|--|--|--|--| | Input power factor | | More than 20% of rated load, 0.95 @ rated load | | | | | | | | | Efficiency | | Inverter efficiency > 98.5% | | | | | | | | | Control mode | | With a simple speed sensorless vector control V/f constant control | | | | | | | | | | Output frequency range | 0.5~120Hz | | | | | | | | | | Output frequency resolution | 0.01Hz | | | | | | | | | Control | Acceleration/deceleration time | 0.1s~6500s | | | | | | | | | function | Output dv/dt | ≤1000V/µs | | | | | | | | | | Subsidiary functions | Speed tracking start, instantaneous stop & restart, multi-speed operation, frequency avoidance, alarm reset, PID control (including intelligent PID control), graphical operation, energy-saving operation, low-voltage compensation. | | | | | | | | | Start/stop sett | ing | Touch screen, control circuit terminals, host communication | | | | | | | | | Frequency | Digital setting | Touch screen, terminal block stepping, host communication | | | | | | | | | setting | Analog setting | 4-channel: 0~5V/0~10V, 4~20mA | | | | | | | | | Input signal | Analog | 4-channel: 0~5V/0~10V (2-channel), 4~20mA (2-channel) | | | | | | | | | iriputsignai | Digital | 8-channel (definable, scalable with optional PLC) (※1) | | | | | | | | | Output signal | Analog | 4-channel: 0~5V/0~10V (2-channel), 4~20mA (2-channel) | | | | | | | | | Output signal | Digital | 10-channel (8-channel relay mode, 2-channel open collector) (%2), Scalable with optional PLC | | | | | | | | | H | lost communication | RS485, ModBus, PROFIBUS (option) (select either one according to user demands) | | | | | | | | | ı | Protective functions | Optical fiber (up, down) protection, IGBT protection, unit over-voltage protection, unit under-voltage protection, unit over-heat protection, unit input open-phase protection, output open-phase protection, transformer over-heat protection, external faulty input protection, over-load protection, under-load protection, door switch protection, DSP1 & DSP2 communication failure protection, overall output over-current protection, overall input over-current protection, closed-loop feedback disconnection protection, output single-phase grounding protection, fan failure protection | | | | | | | | | | Warning functions | Door switch pre-alarm, output current limit, over-load warning, unit over-heat warning, under-load warning, control power switch failure, transformer over-heat warning, output single-phase grounding warning | | | | | | | | | | Display operation | Chinese LCD touch screen, cabinet door button, power indicator | | | | | | | | | | Cooling method | Forced air cooling | | | | | | | | | | IP grade: | IP30 | | | | | | | | | | Ambient temperature | 0°C~+40°C | | | | | | | | | | Storage/transporation temperature | -25°C~+65°C; -25°C~+70°C Maximum 24 hours | | | | | | | | | Environment | Vibration | Below 0.1g(9Hz~200Hz) | | | | | | | | | | Ambient humidity | <90%, non-condensating | | | | | | | | | | Operating environment | Below 1000m above sea level, indoor (avoid direct sunlight, free of corrosive gas, flammable gas and oil mist), can be used by derating above 1000m | | | | | | | | $[\]times$ 1: Refer to the number of digital input channels in inverter itself. When users choose the bypass cabinet, due to the demand of control, the number of digital input channels becomes into 7 for the system consisting of bypass cabinet + inverter. When choosing manual bypass cabinet, DI8 is used for the bypass cabinet, please set it as "MBS terminal"; when choosing automatic bypass cabinet, DI5 is used for the bypass cabinet, please set it as "MBS terminal". Refer to Chapter V: Functional Description, Multi-functional Input Terminals for the method of setting; ^{※2:} Refer to the number of relay output channels in inverter itself. When users choose the automatic bypass cabinet, due to the demand of control, the number of relay output channels becomes into 6 for the system consisting of automatic bypass cabinet + inverter. DO5 is used for the bypass cabinet, please set it as "Overall bypass output"; DO6 is used for the bypass cabinet, please set it as "Inverter operating signal". Refer to Chapter V: Functional Description, Multifunctional Input Terminals for the method of setting. For the system consisting of manual bypass cabinet + inverter, the number of relay output channels will remain 8. Figure 1 Figure 2 Figure 3 Figure 4 #### Overall Dimension #### $Overall\ dimension\ of\ SANYUDRIVE-A7S\&A8S\ series\ of\ high-voltage\ inverter$ | Rated power | | Cabinet dimension | ht H × Depth D) (mm) | | | | | | | | |-------------|------------------------------|------------------------------|----------------------|---------------------|------------------|------------------|--|--|--|--| | (kW) | A7S-6-6-□kW | A7S-10-10-□kW | A8S-6-6-□kW | A8S-6.6-6.6-□kW | A8S-10-10-□kW | A8S-11-11-□kW | | | | | | 220 | | | | | | | | | | | | 250 | | | | | | | | | | | | 280 | 2650×2590×1100
(Figure 1) | 3350×2590×1100 | | 3100×2590×1100 | | | | | | | | 315 | | (Figure2) | 3100×2590×1100 | 3100×2390×1100 | 3750×2590×1100 | 3750×2590×1100 | | | | | | 355 | | | 3100×2390×1100 | | 3/30×2390×1100 | 3/30×2390×1100 | | | | | | 400 | | | | | | | | | | | | 450 | 2750×2590×1100
(Figure 1) | 3400×2590×1100 | | | | | | | | | | 500 | | (Figure 2) | | 3200×2590×1100 | | | | | | | | 560 | | 3550×2590×1100 | | | | | | | | | | 630 | 2950×2590×1100
(Figure 1) | (Figure 2) | | |
3900×2590×1100 | | | | | | | 710 | | 3600×2590×1100 | 3350×2590×1100 | 3350×2590×1100 | 3300/2330/1100 | 3900×2590×1100 | | | | | | 800 | | (Figure 2) | 3330/12370/1100 | 33307(23707(1100 | | | | | | | | 900 | 3000×2590×1100
(Figure 1) | | | | | | | | | | | 1000 | | 3750×2590×1100 | | 3450×2590×1100 | 3950×2590×1100 | | | | | | | 1120 | | (Figure 2) | | 3 1307 (23707 (1100 | 33307(23)07(1100 | 3950×2590×1100 | | | | | | 1250 | 3700×2590×1100
(Figure 2) | | 3950×2590×1100 | 3950×2590×1100 | | 33307(23207(1100 | | | | | | 1400 | | 3900×2590×1100 | | 33307(23707(1100 | 4100×2590×1100 | | | | | | | 1600 | | (Figure 2) | | 4300×2690×1200 | | 4100×2590×1100 | | | | | | 1800 | 4100×2690×1200
(Figure 3) | | 4300×2690×1200 | | | | | | | | | 2000 | | 4800×2690×1200
(Figure 2) | | 4400×2690×1200 | 5500×2690×1200 | 5500×2690×1200 | | | | | | 2240 | 4800×2690×1200 | | 5100×2690×1200 | | | | | | | | | 2500 | (Figure 4) | 5200×2690×1200(Figure 4) | | | 6000×2690×1200 | | | | | | | 2800 | 5550×2690×1200 | 505005004000 | 5850×2690×1200 | 5850×2690×1300 | | | | | | | | 3150 | (Figure 5) | 5950×2690×1200
(Figure 5) | | | 6750×2690×1200 | 6850×2690×1200 | | | | | | 3550 | 6750.22600.21200 | | | | | | | | | | | 4000 | 6750×2690×1300
(Figure 6) | | 7400×2690×1300 | | | | | | | | | 4350 | | 7150×2600×4200 | | 7400×2690×1300 | | | | | | | | 4500 | _ | 7150×2690×1300
(Figure 7) | _ | | 8050×2690×1300 | 8050×2690×1300 | | | | | | 4800 | _ | _ | _ | | | | | | | | | 5000 | _ | | _ | _ | | | | | | | | 5600 | _ | 0500 × 2600 × 4200 | _ | _ | | | | | | | | 6300 | _ | 9500×2690×1300
(Figure 8) | _ | _ | 10800×2690×1300 | 10800×2690×1300 | | | | | | 7100 | _ | | _ | _ | | | | | | | | 8000 | _ | _ | _ | _ | _ | | | | | | # Technical Data #### Instructions for model selection | Basic project information | | |---|--| | User/Unit: | | | Contact: | | | Tel.: | | | Project Name: | ☐Technical reconstruction ☐New-built | | Equipment information | | | Load type: | □Fan □Pump □Compressor □Extruder □Multifarious | | Grid parameters: | | | Grid voltage: | (kV) | | Grid voltage
fluctuation range: | | | Motor parameters | | | Motor model: | | | Manufacturer: | | | Date of manufacture: | | | Rated power: | | | Rated voltage/current: | (kV) (A) | | Rated frequency: | (Hz) | | Rated speed: | (r/min) | | Power factor: | | | Efficiency (%): | | | Y/△Connection: | | | Environmental conditions | | | Indoor temperature: | ~ °C | | Relative humidity: | % and below | | Altitude: | (m) | | Power-frequency bypass cabinet options: | □Not required □Manual switch bypass □Automatic vacuum contactor bypass | | Local communication type: | □RS485 □Moudus □Rrofibus □N/A (no communication) | | Other special requirements | | | | | | 0 : | | 1 '
: | 4
: | 30 | 2 | 50
: | 5000 | 100 | |---------------|---|---|-------|----------------|-------------|--------|--------------------|----------------------------|-------------------------------------|--|---------| | Category | Series | Product features | | | | | | Capad | ity ra | ange | | | Small-sized | SY6600 | Mini-type general purpose inverter ■ The fanless cooling design is suitable for harsh industrial environment ■ Embedded brake unit, facilitating the operation panel lead-out ■ With automatic energy-saving operation, instantaneous stop & restart functions | 0.4kW | / 2.2
00V t | kW
three | | e input
e input | | | | | | | SY8000 | Industry-dedicated vector inverter Combined with industrialization, specialization and customization, which can meet the demands of various industries The vector control is featured by fast response, high accuracy and high dynamic performance Superior environmental adaptability, effectively preventing the dust and other foreign matters | | 0 | 40
75kW | | ee-phas | e input | 355 | kW | | | le-sized | SY8000 | High-performance general purpose inverter Speed sensorless vector control function Wf separation and free V/f graphical function A variety of control functions | | 0 | 40
75kV | | ee-phas | | 55kW | | | | Middle | SY8000 | High-performance vector inverter Advanced high-performance current vector control 32-bit high-speed CPU and LSI response Unique multi-function numerical key operation panel Multi-function dual-relay output | | 1. | 40
5kW | 0V thr | ee-phas
9 | e input

 0kW | | | | | | SY7000 | Fan and pump dedicated light-duty inverter Brand-new PID control mode Well-equipped protection and warning functions Perfect energy-saving mode, easy to operate | | | | | 40
30kW | | e-phas | se input | | | e - s i z e d | SY8600 | Large-capacity specialized inverter Compact design, providing the highest power intensity within the industry Strong over-load withstanding ability, easier for the startup of heavy-duty equipment Excellent cooling mode, with superior environmental adaptability Unique semiconductor parallel design, with higher reliability and stability | | | | | | 35 | 400
55kW | 0V three-phase inpo
630kW | ut | | Larg | SY8600 | ■ Basing on the platform of dual-inverter parallel connection technology, bring excellent solution for the large-power motor drives ■ With superior configurability and programmability ■ Optical fiber communication, response 32Bit DSP high-speed processing ability ■ Enlarge equipment operating space, improve cooling conditions and ensure the smooth equipment running | | | | | | 35 | | 0V three-phase inp | ut | | | | High-voltage inverter With good versatility, suitable for most applicational occasions With superior reliability and excellent input/output | | | | | | 22 | 0kW | ree-phase input
5600kW | | | a g e | SANYUDRIVE A7/A7(S) | characteristics Automatic energy-saving control, automatic anti-
stall function | | | | | | | OkW | ree-phase input | 10000kW | | High-voltag | High-voltage inverter Characterized by heavy load, high torque and constant torsion Wider voltage range Strong over-load withstanding ability, lower harmonic component | | | | | | | 22 | 20kW
6.6kV
10kV th
11kV th | three-phase inpu
6300kW
rree-phase input | 10000kW | | | SANYUDRIVE A8/A8(S) | | | | | | | | 0kW | | 10000kW | Sales Service Contact ## Sanyu Industry Co., Ltd. Add: No 723, Shangcheng Road No. 800. Shanghai, China Tel:+86-21-65046976 Fax:+86-21-51686158 www.sanyuacdrive.com email: alansunrise@sina.com | Version Number: KL1-V11EA1-150300MD | | |-------------------------------------|--| The content in this commodity catalogue may vary due to any improvement without prior notice. The color of any commodity contained therein may differ slightly from the actual commodity. Your understanding will be appreciated. SANYU Industry Co., Ltd. reserves the right to the final interpretation of this commodity catalogue.